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Abstract 

Production managers constantly seek ways to minimise waste and costs, so as to maximise profit. However, constraints 

such as budget, machine, manpower and storage capacities tend to make these optimisation tasks complex. Therefore, 

this study proposes a profit maximisation and optimal order quantity estimation model, considering various 

constraints. The study compares two optimisation methods, namely machine learning (Bayesian Optimisation) and 

nonlinear programming (PuLP Optimisation). The optimisation methods were applied to a small bottled water supply 

chain that produces bottled water of various sizes. The optimal order quantities from the Bayesian Optimisation for 

the 33cl, 50cl, 75cl and 150cl bottled water products are 300 packs, 483 packs, 150 packs and 33 packs, respectively, 

giving a maximum profit of ₦1,487,884. On the other hand, the optimal order quantities from the PuLP Optimisation 

for the 33cl, 50cl, 75cl and 150cl bottled water products are 295 packs, 519 packs, 177 packs and 91 packs, 

respectively, giving a maximum profit of ₦1,967,499. Though the PuLP Optimisation provided a higher profit, some 

of its order quantity estimates were above the average demand for the products. This could lead to product 

overstocking, and subsequent waste in the form of overproduction or excess inventory. On the other hand, though the 

Bayesian Optimisation was more computationally expensive, its order quantity estimates were less than or equal to 

the average demand for the products. Therefore, in the context of this study, the Bayesian Optimisation can be deemed 

to be better than its PuLP Optimisation counterpart. The study is significant to production management in general, 

and bottled water supply chains in particular, because it proposes an order quantity estimation and profit maximisation 

model, as well as a comparison of various methods for solving the model. 
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1. Introduction 

Manufacturing supply chains are the networks that link 

suppliers of raw materials, manufacturers, distributors 

and consumers of products. They are the means by 

which raw materials are refined and distributed to 

customers (Kunovjanek et al., 2022; Naghshineh & 

Carvalho, 2022). Orders are extremely common in 

manufacturing supply chains. Through orders, a 

segment of a manufacturing supply chain 

communicates its requirements to its preceding 

neighbouring segment. Common types of orders within 

manufacturing supply chains are purchase orders, 

production orders, work orders, sales orders, transfer 

orders, maintenance orders, repair orders, return orders, 

requisition orders and stock or inventory orders. 

Purchase orders are created during procurement of raw 

materials or components from suppliers. Production 

orders are issued to initiate the manufacturing process. 

Work orders are similar to production orders but are 

mainly used for particular, detailed production process 

tasks. Sales orders are generated when a customer 

places an order for finished goods. Transfer orders are 

used to move materials or products between different 

facilities or locations within a company, such as from a 

warehouse to a production facility. Maintenance orders 

are issued to carry out maintenance activities on 

equipment or machinery within the production process, 

thereby aiding smooth functioning of production assets 

and downtime prevention. Repair orders are generated 

when products are returned by customers for repairs or 

when internal assets require fixing. Return orders are 
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created for goods that need to be returned, either from 

customers i.e. return of sold products or from 

production back to inventory e.g. defective parts. 

Requisition orders are used internally to request 

materials or parts needed for production. Stock or 

inventory orders are issued to manage inventory 

replenishment, especially for materials held in 

warehouses. Whether they are purchase orders, 

production orders, raw materials or finished products, 

each segment of a manufacturing supply chain usually 

requires transfer of items, to or from the preceding 

segment. 

Optimisation is paramount in any manufacturing 

organisation that needs to reduce waste and costs, in 

order to maximise profit. The optimisation operation is 

usually led by managers in various echelons of 

manufacturing supply chains, who gather feedback data 

from supply chain personnel, as well as product 

consumers (Wofuru-Nyenke et al., 2023). These data 

are usually transformed into useful information and 

insights that can aid the managers in determining the 

best ways to manufacture and distribute products. As a 

matter of fact, managers are usually concerned about 

selecting the best suppliers of raw materials and 

services (Wofuru-Nyenke, 2023a); accurate forecasting 

of product demand (Wofuru-Nyenke & Briggs, 2022; 

Wofuru-Nyenke, 2022); utilising the most efficient 

methods and equipment (Wofuru-Nyenke, 2024a, 

2024d; Wofuru-Nyenke, 2021a, 2023b; Wofuru-

Nyenke & Okere, 2025); optimal scheduling of 

production activities (Wofuru-Nyenke, 2024e); 

selecting the most feasible, reliable and profitable 

product designs (Ugoji et al., 2022; Wofuru-Nyenke, 

2024b; Wofuru-Nyenke, 2020, 2024f); and optimally 

locating facilities and distributing products (Wofuru-

Nyenke, 2024c). Therefore, several authors and 

researchers have made attempts at developing models 

that aid the manufacturing supply chain optimisation 

process (Ahmad et al., 2022; Awudu et al., 2024; 

Ebrahimi & Bagheri, 2022; Islam et al., 2022; 

Ravindran et al., 2023; Sun et al., 2022; Verma et al., 

2024; Zerafati et al., 2022). Despite several attempts at 

developing optimisation models, there is a lack of 

generic models and associated model solutions for 

supply chain profit maximisation considering budget, 

storage capacity and service level constraints. 

Therefore, the aim of this study is to propose a profit 

maximisation and waste reduction model for 

determining the optimal order quantities of different 

products in a supply chain echelon, while considering 

various constraints, such as budget, storage capacity, 

and service level. The study compares two approaches 

of solving the model, namely machine learning 

(Bayesian Optimisation) and nonlinear programming 

(PuLP Optimisation). The following section presents 

the equations and constraints involved in the 

mathematical formulation of the model, as well as the 

flowcharts that display the logic of the Python 

implementation of the optimisation techniques. 

2. Methodology 

This study proposes a mathematical model for 

maximising profit, through the optimisation of order 

quantities of products in the factory warehouse echelon 

of a supply chain, considering demand, costs, safety 

stock, lead time, budget, and storage constraints. Figure 

1 shows the interrelationship between the various 

segments and echelons of the small bottled water 

manufacturing supply chain, whose optimal order 

quantities are being estimated. From Figure 1, the small 

supply chain network starts with suppliers that deliver 

raw materials to the water bottling factory, after 

receiving the purchase order. In turn, the factory sends 

finished products to the factory warehouse, after 

receiving the production order. The production order 

usually contains the order quantities, Qp, of the various 

products handled by the supply chain. Finally, the 

factory warehouse satisfies product demand emanating 

from consumers or distribution warehouses. This study 

is concerned with determining the optimal values of Qp 

that maximise profit and reduce waste. The 

optimisation problem is formulated as a profit 

maximisation problem and the objective function can 

be expressed as 

max
Qp

Profit(Qp)    subject to budget, capacity and service level constraints (1) 
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where,  

Qp is the order quantity of product p, 

Profit is the difference between the revenue from sales of the product and the total cost.  

In fact, the total cost comprises of ordering, holding, and purchasing costs. Therefore, the profit function can be 

expressed as 

Profit =  ∑(Rp − Hp − Op − Pp)

p∈P

 (2) 

where,  

P is the set of products,  

Rp is the revenue from product, p,  

Hp is the holding cost,  

Op is the ordering cost 

Pp is the production cost of product, p.  

The revenue, Rp, from sales of product, p, can be expressed as 

Rp = Sp ∙ min(Qp, Dp) (3) 

where,  

Sp is the selling price per unit,  

Qp is the order quantity,  

Dp is the average monthly demand of product, p, at the 

factory warehouse.  

 

Figure 1: Interrelationship between segments of the bottled water supply chain. 

Assuming the average inventory level is 
Qp

2
, the holding cost, Hp, of product p, can be expressed as 

Hp =
Qp

2
∙ Hp (4) 

where, 

Qp is the order quantity of product p.  

Assuming the total number of orders placed is 
Dp

Qp
, the ordering cost, Op, of product p, including variable and fixed 

order cost and can be expressed as 
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Op =
Dp

Qp

∙ Op (5) 

where,   

Dp is the average monthly demand of product, p, at the 

factory warehouse,  

Qp is the order quantity of product p.  

While the production cost of product p, Pp, can be expressed as 

Pp = Qp ∙ Cp (6) 

where,  

Qp is the order quantity of product p,  

Cp is the production cost per unit of product p.  

If by make-or-buy decisions, the factory warehouse 

decides to use their supply chain manufacturing plant to 

make the stored finished products, then Pp is referred to 

as the production cost of product p. However, if the 

factory warehouse decides to buy the stored finished 

products from a different manufacturer or factory, then 

Pp is the purchasing cost.  

From the foregoing, by substituting equations 3, 4, 5 and 6 in equation 2, the total profit across all products can be 

expressed as  

Profit =  ∑ (Sp ∙ min(Qp, Dp) −
Qp

2
∙ Hp −

Dp

Qp

∙ Op − Qp ∙ Cp)

p∈P

 (7) 

Subject to the following constraints 

1. Production/Purchasing Budget Constraint 

This constraint demands that the total production cost of all products should not exceed the available 

production budget, B, and it can be expressed as: 

∑ Pp ≤ B

p∈P

 (8) 

2. Storage and Ordering Budget Constraint 

This constraint demands that the total storage and ordering costs of all products should not exceed the 

available storage and ordering budget, Bso, and it can be expressed as: 

∑(Hp + Op) ≤ Bso

p∈P

 (9) 

3. Storage Capacity Constraint 

This constraint demands that the total inventory units across all products should not exceed the storage 

capacity, SC, and it can be expressed as: 

∑ Qp ≤ SC

p∈P

 (10) 

4. Reorder Point Constraint 

The reorder point (ROP) is the inventory level at which an order should be placed to avoid stockouts. The 

ROP constraint demands that the order quantity, Qp for each product should be greater than or equal to its 

ROP, and it can be expressed as: 

Qp ≥ ROPp                ∀p ∈ P (11) 
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The reorder point for a particular product (ROPp) can be expressed as (Chopra & Meindl, 2016): 

ROPp = μpLp + z ∙ σp√Lp (12) 

where,  

μp =
Dp

30
 is the average daily demand for 

product, p, at the factory warehouse,  

Lp is the lead time (days) for product p,  

z is the safety factor corresponding to the 

desired service level,  

σp is the standard deviation of daily demand 

for product, p, at the factory warehouse. 

This study applied the Bayesian Optimisation algorithm 

implemented in Python programming language, 

through the Bayesian-optimisation library. The 

algorithm is a sequential optimisation algorithm that 

globally optimises an objective function, through the 

utilisation of an objective function probability model to 

select hyperparameters for evaluation in the true 

objective function, in order to obtain the optimum value 

of the function (Garnett, 2023). The nonlinear profit 

maximisation model was also solved by linearising the 

nonlinear components, and using the PuLP 

Optimisation library for obtaining optimal values of 

product order quantities. The PuLP Optimisation uses 

the Economic Order Quantity (EOQ) formula for 

determining the optimal order quantity. The EOQ for 

each product, p, can be expressed as (Chopra & Meindl, 

2016):

EOQp = √
2DpOp

Hp

 (13) 

where, 

Dp is the average monthly demand for product, p, at the 

factory warehouse, 

Op is the ordering cost of product, p,  

Hp is the holding cost of product, p.  

The optimum from both methods were compared, and 

the results of the comparison were presented and 

discussed in the results and discussion section. For 

comparing the maximised profits obtained from the two 

optimisation methods, the percentage difference 

formula was used. This formula can be expressed as 

% Difference (Profit) =  
|PBO − PPO|

(
PBO + PPO

2
)

× 100 (14) 

where,  

PBO is the profit from Bayesian Optimisation, 

PPO is the profit from PuLP Optimisation. 

The optimisation algorithms were applied to a small 

water bottling company which produces four products 

namely, 33cl, 50cl, 75cl and 150cl bottled water. The 

data from the water bottling company are shown in 

Table 1.  From Table 1, the average monthly demand 

for the 33cl, 50cl, 75cl and 150cl bottled water products 

are 300, 600, 150 and 50 packs, respectively. Also, the 

costs of ordering raw materials for the 33cl, 50cl, 75cl 

and 150cl bottled water products are ₦500, ₦400, ₦600 

and ₦600 respectively. Moreover, the cost of storing 

the bottled water product is ₦ 100 for each category of 

bottled water product. Again, the selling prices of the 

33cl, 50cl, 75cl and 150cl bottled water products are 

₦1,500, ₦1,800, ₦2,000 and ₦3,000 per pack, 

respectively.
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Table 1: Data from water bottling company. 

Data 
Products 

33cl 50cl 75cl 150cl 

Average demand (Packs/Month) 300 600 150 50 

Ordering cost (₦) 500 400 600 600 

Holding cost (₦) 100 100 100 100 

Selling price (₦) 1500 1800 2000 3000 

Production cost per unit (₦) 20 30 40 40 

Daily standard deviation (Packs) 5 5 5 5 

Lead time (Days) 21 21 21 21 

Budget (₦) 100,000 

Storage capacity (Packs) 1,000 

Service level 0.9 

The production cost per unit of the 33cl, 50cl, 75cl and 

150cl bottled water products are ₦20, ₦30, ₦40, ₦40, 

respectively. The daily standard deviation and lead time 

for the 33cl, 50cl, 75cl and 150cl bottled water products 

are 5 packs and 21 days, respectively. Finally, the 

budget, storage capacity and service level of the water 

bottling company are ₦100,000, 1,000 packs and 0.9, 

respectively. The service level represents the ability of 

the warehouse to completely meet customer demand on 

time. In this study, the service level ranges from 0, 

which is low, to 1, which is high. The justification for 

selecting a service level of 0.9 is that the optimal order 

quantities predicted at that service level will still be the 

best if the service level drops. Figure 2 shows the 

flowchart of the optimisation logic utilised by the 

Bayesian Optimisation algorithm, while Figure 3 shows 

the flowchart of the PuLP Optimisation logic. 

3. Results and Discussion 

The Bayesian Optimisation algorithm was used to 

obtain the optimal order quantities of each of the 

products produced by the water bottling company, as 

well as the optimal solution of the profit maximisation 

problem. The optimisation was run with the “n_iter” 

and “init_points” parameters set to 200 steps and 300 

steps, respectively, giving a total of 500 iterations. The 

results indicated that in order to efficiently meet 

customer demand, the optimal order quantity for the 

33cl, 50cl, 75cl and 150cl bottled water products are 

300 packs, 483 packs, 150 packs and 33 packs, 

respectively. Figure 4 shows the plot of Profit versus 

Iteration, and the maximum profit that can be obtained 

from using these order quantities.  

In Figure 4, the maximum profit occurs at iteration 348 

and the value is ₦1,487,884. By linearising the 

nonlinear components of the objective function, the 

PuLP Python library was also used to solve the 

nonlinear profit maximisation problem, and obtain 

optimal order quantities for each of the products of the 

water bottling company. The results indicated that in 

order to efficiently meet customer demand, the optimal 

order quantity for the 33cl, 50cl, 75cl and 150cl bottled 

water products are 295 packs, 519 packs, 177 packs and 

91 packs, respectively. Moreover, the maximised profit 

when these order quantities are utilised is ₦1,967,499. 

Figure 5 shows a comparison between the demand and 

the optimal order quantities from each of the 

optimisation methods. 
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Figure 2: Flowchart of the Bayesian Optimisation logic for optimising order quantities. 
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Figure 3: Flowchart of the PuLP Optimisation logic for optimising order quantities. 
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Figure 4: Plot of Profit versus Iteration for the bottled water products. 

 

Figure 5: Comparison of average demand and optimal order quantities from Bayesian Optimisation (BO) and PuLP 

Optimisation (PO). 

In comparing the two optimisation methods, the 

Bayesian Optimisation seems to be more 

computationally expensive than the PuLP 

Optimisation, requiring considerably more resources 

such as processing time, memory and processing 

power. Also, it was observed that the optimal order 

quantities obtained from the Bayesian Optimisation 

were consistently less than or equal to the average 

monthly demand for each of the products. On the other 

hand, the optimal order quantities obtained from the 

PuLP Optimisation were consistently greater than the 

average monthly demand for each of the products, 

except for the 33cl and 50cl bottled water products, 

where the optimal order quantities were less than the 
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average monthly demand. This means that if the 

optimal order quantities from the PuLP Optimisation 

are utilised, there is a tendency that the 75cl and 150cl 

bottled water products will be overstocked, leading to 

waste in the form of overproduction or excess inventory 

(Wofuru-Nyenke, 2021b; Wofuru-Nyenke et al., 2019). 

Physically overstocking products can lead to a situation 

where the company’s financial resources are tied up in 

inventory. This is bad because those resources could be 

used for more important company needs that directly 

and immediately improve the company’s bottom line. 

Compared to this, the computational cost from the 

Bayesian Optimisation algorithm is trivial, and can 

easily be ameliorated by utilising more powerful 

computers, which can be cheaper to acquire than the 

cost of overstocking products. The computational cost 

problem can also be solved by utilising distributed 

optimisation, however, this may require a distributed 

optimisation model. 

The percentage difference between the maximised 

profits from the Bayesian Optimisation and PuLP 

Optimisation is 27.76%. This means that the two profits 

differ by 27.76%, relative to their average. Figure 6 

shows a comparison of the total profit obtained from the 

Bayesian and PuLP Optimisation methods.  

 
Figure 6: Comparison of total profit from Bayesian Optimisation and PuLP Optimisation. 

In Figure 6, the profit from the PuLP Optimisation is 

greater than that from the Bayesian Optimisation. By 

analysing Figures 3 and 4, it can be observed that the 

total optimal order quantities obtained from the 

Bayesian Optimisation method are less than those 

obtained from the PuLP Optimisation method, thereby 

justifying the larger total profit from the PuLP 

Optimisation. Probably, by increasing the number of 

iterations in the Bayesian Optimisation method, better 

optimal order quantities and larger total profit could be 

obtained. This can be achieved by setting the “n_iter” 

and “init_points” parameters within the Bayesian 

Optimisation code to higher values. However, the major 

drawback of increasing the number of iterations in 

Bayesian Optimisation, is the apparent computational 

expensiveness of the optimisation algorithm. This 

means that as the number of iterations of the Bayesian 

Optimisation increases, the model consumes more 

resources in order to determine the optimal values. 

Moreover, the results from the Bayesian Optimisation 

are dynamic. This means that the results change, based 

on different input data to the objective function or 

optimisation model. 

4. Conclusion 

This study proposes a mathematical model for 

maximising profit, through the optimisation of order 

quantities of products in the factory warehouse segment 

of a manufacturing supply chain. The model takes 

demand, costs, safety stock, lead time, budget, and 

storage constraints into consideration, while 

determining the optimal values. The model was solved 

by using two optimisation methods namely, Bayesian 

and PuLP Optimisation, both implemented in Python. 

From the results, both methods perform well at 
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determining the optimal order quantities of bottled 

water products. However, in comparing both methods, 

the Bayesian Optimisation method is more 

computationally expensive, requiring more resources to 

determine the optimum. Also, the optimal order 

quantities generated by the PuLP Optimisation tend to 

be higher than the average demand, which could lead to 

waste in the form of overproduction or excess 

inventory, within the supply chain facilities. Since the 

aim of the optimisation is to determine optimal order 

quantities that maximise profit while reducing waste, 

the Bayesian Optimisation can be deemed to be superior 

to the PuLP Optimisation, within the context of this 

study.  

The research has shown how a machine learning 

technique (Bayesian Optimisation), as well as a 

nonlinear programming technique (PuLP Optimisation) 

can be used for optimal order quantity estimation and 

profit maximisation. The study is significant to 

production management in general, and bottled water 

supply chains in particular, because it proposes an order 

quantity estimation and profit maximisation model, as 

well as a comparison of various methods for solving the 

model. Further research can investigate the efficacy of 

other optimisation methods at maximising profit while 

reducing waste. Therefore, optimisation methods such 

as genetic algorithms, simulated annealing and particle 

swarm optimisation can be investigated, for optimal 

order quantity estimation and profit maximisation. 

Moreover, the methods investigated in this research 

utilised a deterministic average demand value. Further 

research can utilise a probability distribution for 

demand, to better capture the randomness in empirical 

demand data. 
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